70 research outputs found

    Absence of Chaos in Bohmian Dynamics

    Full text link
    The Bohm motion for a particle moving on the line in a quantum state that is a superposition of n+1 energy eigenstates is quasiperiodic with n frequencies.Comment: 1 pag

    Dynamics of the Potts model on a fractal lattice

    Get PDF
    The dynamics of the q-state Potts model on a fractal lattice is studied using Monte Carlo simulations. The Glauber dynamics is used leading to an effective temperature-dependent critical exponent of the form z = AK + B implying the breakdown of conventional dynamic scaling. The value of A is shown to be independent of q, within the error bars

    Dynamical properties of an harmonic oscillator impacting a vibrating wall

    Get PDF
    The dynamics of a spring-mass system under repeated impact with a vibrating wall is investigated using the static wall approximation. The evolution of the harmonic oscillator is described by two coupled difference equations. These equations are solved numerically, and in some cases exact analytical expressions have also been found. For a periodically vibrating wall, Fermi acceleration is only found at resonance. There, the average rebounding velocity increases linearly with the number of collisions. Near resonance, the average rebounding velocity grows initially with the number of collisions and eventually reaches a plateau. In the vicinity of resonance, the motion of the oscillator exhibits scaling properties over a range of frequency ratios. The presence of dissipation at resonance destroys the Fermi-acceleration process and induces scaling behavior similar to that at near resonance. For a moving wall with a random amplitude at collisions, Fermi acceleration is observed independently of the ratio between the wall and oscillator frequencies. In this case the average rebounding velocity grows with the square root of the number of collisions with the wall. Also, in this latter case, dissipation suppresses the Fermi-acceleration mechanism and induces a scaling behavior with the same universality class as that of the dissipative bouncing ball model with random external perturbations

    Quantum fidelity approach to the ground state properties of the 1D ANNNI model in a transverse field

    Get PDF
    In this work we analyze the ground-state properties of the s=1/2s=1/2 one-dimensional ANNNI model in a transverse field using the quantum fidelity approach. We numerically determined the fidelity susceptibility as a function of the transverse field BxB_x and the strength of the next-nearest-neighbor interaction J2J_2, for systems of up to 24 spins. We also examine the ground-state vector with respect to the spatial ordering of the spins. The ground-state phase diagram shows ferromagnetic, paramagnetic, floating, 2,2\Braket{2,2} phases, and we predict an infinite number of modulated phases in the thermodynamic limit (LL \rightarrow \infty). The transition lines separating the modulated phases seem to be of second-order, whereas the line between the floating and the 2,2\Braket{2,2} phases is possibly of first-order.Comment: 10 pages, 20 figure

    Corrections to scaling for diffusion in disordered media

    Get PDF
    We study the diffusion of a particle in a d-dimensional lattice where disorder arises from a random distribution of waiting times associated with each site of the lattice. Using scaling arguments we derive, in addition to the leading asymptotic behaviour, the correction-to-scaling terms for the mean square displacement. We also perform detailed Monte Carlo simulations for one, two and three dimensions which give results in substantial agreement with the scaling argument predictions

    Comment on Long-Time Dynamics via Direct Summation of Infinite Continued Fractions

    Get PDF
    A Comment on the Letter by Z.-X. Cai et al., Phys. Rev. Lett. 68, 1637 (1992)

    Breakdown of Hydrodynamics in the Classical ID Heisenberg Model

    Get PDF
    Extensive spin‐dynamics simulations have been performed to study the dynamical behavior of the classical Heisenberg chain at infinite temperatures and long wavelengths. We find that the energy and spin show distinctly different dynamics in the isotropic system. The energy correlation function follows the classical diffusion theory prediction, namely, it decays exponentially with q 2 t. In contrast, the spin correlation function is found to decay exponentially as q 2.12 t ln t implying a logarithmically divergent diffusion constant and the failure of the usual hydrodynamic assumptions
    corecore